

FIXEdge

Business Rules Guide

FIXEdge Business Rules Guide

Document History

Version Date Description of change

1.0 2007-06-19 Initial version
2.0 2009-05-15 Changed ―FIXEdge events‖ section

Added sample with events in ―Routing with source identifiers‖ section

FIXEdge Business Rules Guide

Table of Contents

Overview .. 4
Configuring Business Rules .. 5

Loading XML rules from separate files .. 5

Cases of routing rules .. 7
Routing rules for incoming messages from FIX session .. 7
Routing rules for incoming messages from TA client .. 7
Routing with source identifiers .. 8

Routing to multiple destinations .. 9
Transformation rules ... 9
Mixed rules .. 10

Syntax .. 12
Rule structure .. 12

Source section .. 12

Condition section ... 13
Action section .. 15

Source identification .. 18
FIXEdge events.. 19

Session events .. 19

Create session event ... 19
Destroy session event ... 20

Unable to route message event .. 20
Plug-ins .. 22

Handlers ... 23
Histories ... 24

Examples .. 26

Scripts .. 30
Business Rule scripting with Javascript ... 30
Business Rule scripting with XSLT .. 31

Default routing strategies ... 33
Contact us .. 36

FIXEdge Business Rules Guide

Overview
FIXEdge offers the set of Business Rules, which can be useful to determine message
routing, session events, scripting, message modification, plug-in connection, histories
management, automatic routing for some types of the messages. The Rules formation is
defined by special syntax in the XML format that is described in this guide.

FIXEdge Business Rules Guide

Configuring Business Rules

Business Rules are stored in ‗FixEdge/conf/BL_Config.xml’ file in XML format. The name of
configuration file can be changed in ‗FixEdge.properties‘ file using
‗BusinessLayer.RoutingRules’ property. The XML formatting is described in
‗FixEdge/conf/BusinessLayer.dtd’. Rules can be changed from FECC or by editing the file
directly. They can also be reloaded immediately from FECC.
The following classes are defined for Business Rules:

 Routing rules – used to transform and route FIX messages to sessions, adaptors etc

 Session events – used to handle events that are launched during execution – create
session, destroy session etc

The Business Rules XML file may contain the following auxiliary entities definitions that could
be used in Business Rules:

 Plug-ins – objects that encapsulate field transformation algorithm

 Handlers - objects that encapsulate message handling algorithm

 Histories – objects that store data from the handled messages

 Routing strategies - objects that encapsulate algorithms of automatic message routing

Loading XML rules from separate files

XML rules for Business Layer can be stored in separate files. Use the following configuration
property:
BusinessLayer.RoutingRules = file1.xml, file2.xml, file3.xml,…etc to load the set of rules.

Please note while configuring: each XML document must be a part of a single document. I.e.
the first file must contain the standard header of XML file <?xml version="1.0" encoding="UTF-8"?>

(or UTF-16).

The certain rules will be loaded into Business Layer from documents, but within tags:

<FixEdge>

<BusinessLayer>
 <!—-

the rules set...
-->

</BusinessLayer>
</FixEdge>

The good practice is to start the list with BL_header.xml with the following content:

<?xml version="1.0" encoding="UTF-8"?> (or UTF-16).
<FixEdge>

<BusinessLayer>

FIXEdge Business Rules Guide

and end up with BL_tail.xml with the following content:

</BusinessLayer>

</FixEdge>

In this case the configuration property will look like this:
BusinessLayer.RoutingRules = BL_header.xml,…file1.xml, file2.xml,…,BL_tail.xml

FIXEdge Business Rules Guide

Cases of routing rules
FIXEdge router provides the user with a possibility to establish a set of Business Rules that
enables FIXEdge with:

 Routing of incoming and outgoing FIX messages (via the correspondence between
ClientID and FIX Session).

 Filtering of incoming and outgoing FIX messages.

 Transformation of incoming and outgoing FIX messages.
All 3 functions are accomplished through the customizable (user-defined) Rules in XML
format, placed in the Business Layer configuration file. This means that more than one rule
can be applied to a message. It is also possible to route one message to multiple
destinations or to the same destination multiple times. All rules are applied separately
(independently), the order is not guaranteed. Even if a set of transformation actions is applied
to messages, the next rule will be applied to the original message.
More information about routing rules can be found in
FixEdge_RoutingRules_UserGuide.html.

Routing rules for incoming messages from FIX session

While routing an incoming message the Rule must have <Session> source in its structure.
Also, there must be at least one instruction in the Action section. On demand, user can
choose and specify the condition.

<Rule>
 <Source>
 <FixSession SenderCompID="TestSender" TargetCompID="TestTarget"/>
 </Source>
 <Condition>
 <MatchField Field="35" Value=".*"/>
 </Condition>
 <Action>
 <Send>
 <Client Name="TestClient"/>
 </Send>
 </Action>
</Rule>

Routing rules for incoming messages from TA client

The routing approach for handling the incoming messages from TA client is the same as for
incoming messages from FIX sessions, except for one difference: the source is always a
Client ID. FIX messages from TA clients are routed to the requisite FIX sessions based on
the SenderCompID and TargetCompID fields.
Example:

FIXEdge Business Rules Guide

<Rule>
 <Source>
 <Client Name="TestClient"/>
 </Source>
 <Condition>
 <MatchField Field="35" Value=".*"/>
 <MatchField Field="571" Value="IST-\\d+"/>
 </Condition>
 <Action>
 <Send>
 <FixSession SenderCompID="TestSender" TargetCompID="TestTarget"/>
 </Send>
 </Action>
</Rule>

It is possible to send a message to destinations denoted as the SenderCompID and
TargetCompID in the message itself. You can do this by omitting SenderCompID and
TargetCompID attributes in FixSession tag. For example: <FixSession/>.

Routing with source identifiers

Source identifiers can be used as ―Name‖ attribute of <Source> tag as well as ―Name‖
attribute of <Send> tag. The following example demonstrates the routing of an incoming
message from the session identified as ―TestSource‖ to destination with ―TestTarget‖
identifier; only messages that satisfy <MatchField> conditions are included:

<Rule>
 <Source Name = "TestSource"/>

<Condition>
 <MatchField Field="35" Value="D"/>

</Condition>
<Action>
 <Send Name="TestTarget"/>
</Action>

</Rule>

<--! Send reject on back-way if source ―TestTarget‖ are disconnected -->

<OnUndeliveredMessageEvent>
<Source Name= "TestTarget" />
<Action>

<CreateReject RejectType="application"/>
<Send Name="TestSource" />

</Action>
</OnUndeliveredMessageEvent>

Note that the source identifier represents FIX Session or Clients too. Please refer to Source
identification section for a detailed description of its usage.

FIXEdge Business Rules Guide

Routing to multiple destinations

The sending rule is able to send a message to multiple destinations by one <Send> as well.
In this case destinations can be enumerated inside the body as ―FixSession‖, ―Client‖:

<Rule>
 <Source>
 <Client Name=".*"/>
 </Source>
 <Action>
 <Send>
 <FixSession SenderCompID="Sender1" TargetCompID="Target1"/>
 <FixSession SenderCompID="Sender2" TargetCompID="Target2"/>
 <Client Name="TestClient1"/>
 <Client Name="TestClient2"/>
 </Send>
 </Action>
</Rule>

Below you can see the example of routing to multiple destinations identified by source
identifiers (e.g. ―Name‖ attribute of <Send> tag):

<Rule>
 <Source Name=".*"/>

<Action>
<Send Name="Session1"/>
<Send Name="ClientIdentifer">

<Client Name="TestClient1"/>
<FixSession SenderCompID="Sender2" TargetCompID="Target2"/>

</Send>
<Action>

</Rule>

Note: the example also demonstrates the embedded destinations usage in the <Send> rule
for source identifier ―ClientIdentifier‖; rules of such kind are allowed in the routing rules.

Transformation rules

You can use SetField, Convert, MoveField, RemoveField or Script tags to change a
message.
Example:

<Rule>
 <Source>
 <Client Name="TestClient"/>

FIXEdge Business Rules Guide

 </Source>
 <Condition>
 <MatchField Field="35" Value=".*"/>
 <MatchField Field="571" Value="IST-\\d+"/>
 </Condition>
 <Action>
 <MoveField SourceField="32" TargetField="48" />
 <Script Language='Javascript' Field="" LengthField="" FileName="sc_2_3.js" >
 <Param Name="Acct">JBDFLYX</Param>
 </Script>
 <Convert TargetProtocol="FIX.4.3" SourceProtocol="">
 <SetField Field="35" Value="abc" />
 <RemoveField Field="50" />
 </Convert>
 </Action>
</Rule>

If more than one transformation is specified the next transformation is applied to the result of
the previous transformation.

Mixed rules

There are no restrictions for the number of Action elements (acts) of different types. In this
case they are executed in the order of appearance.
Example:

<Rule>
 <Source>
 <Client Name="TestClient"/>
 </Source>
 <Condition>
 <MatchField Field="35" Value="C"/>
 </Condition>
 <Action>
 <SetField Field="57" Value="TargetSubID"/>
 <Send>
 <FixSession SenderCompID="TestSender" TargetCompID="TestTarget"/>
 </Send>
 <SetField Field="57" Value="AdminTargetSubID"/>
 <Send>
 <FixSession SenderCompID="TestSender" TargetCompID="AdminTestTarget"/>
 </Send>
 </Action>
</Rule>

This will result in the scenario below:

1) Message is duplicated: SrcMsg → DupMsg
2) For DupMsg: Field 57 is set to "TargetSubID"

FIXEdge Business Rules Guide

3) DupMsg is set to the defined FIX Session ID
4) Message is duplicated: DupMsg → DupDupMsg
5) For DupDupMsg: Field 57 is set to "AdminTargetSubID"
6) DupDupMsg is set to the defined FIX Session ID

Note: The message will be duplicated according to the number of Send actions in the rule.

FIXEdge Business Rules Guide

Syntax

Rule structure

<Rule> element has a single ―Enabled‖ attribute. <Rule Enabled=‖false‖> disables rule
parsing by Business Layer. By default the attribute value has a true value.
Each rule consists of:

 Source (required section)

 Condition (implied section)

 Action (required section)
Note that XML comments cannot be inside <Rule> structure, only outside the rule. If the
formed rules do not meet the syntax requirements, FIXEdge stops loading and records an
error message in the log file.

Source section

Source can be a FIX Session, which is a pair of SenderCompID and TargetCompID or a
Client, which is denoted by client Name. Source section may contain the following elements:

 Client – defines Transport Client as source:

<Source>
 <Client Name="TestClient"/>
</Source>

 FIXSession – defines FIX session as source; FIX session is identified by
SenderCompID and TargetCompID pair:

<Source>
 <FixSession SenderCompID="Sender" TargetCompID="Target"/>
</Source>

 Name attribute – defines the identifier of FIX session or Transport Client as source
(Please refer to Source identification for details):

<Source Name="SourceID"/>

FIXEdge Business Rules Guide

Condition section

Condition is a set of pre-defined criteria. The application checks FIX messages on the criteria
and if Condition is met Action is to be executed; otherwise Action is ignored.
Condition section may contain the following criteria:

 EqualField – compares two values:

<EqualField Field="35" Value="D" />

 NotEqualField – compares two values and returns true when they are not equal:

<NotEqualField Field="35" Value="asd"/>

 MatchField – compares two values treating value as a regular expression:

<MatchField Field="35" Value=".*"/>

 NotMatchField – compares two values as a regular expression and returns true
when they are not equal:

<MatchField Field="35" Value="[1-9]$"/>

 ExistField – checks the field presence in message:

<ExistField Field="35"/>

 NotExistField – checks the field presence in message, returns true if it does not
exist:

<ExistField Field="35"/>

 Script – applies JavaScript condition to message:

<Script Language="JavaScript" FileName ="testScript.js"/>

FIXEdge Business Rules Guide

 MatchMessage – applies regular expression to message string representation:

<MatchMessage Value=".*?55=10.*?"/>

 NotMatchMessage – applies regular expression to message string representation
and returns true when regular expression is not matched:

<NotMatchMessage Value=".*?55=10.*?"/>

 EqualDestination – locates message destination session according to the specified
automatic routing strategy and returns true when the located destination session is
equal to the one specified in action

<EqualDestination Strategy="OrderFlowStrategy100" Value="Client"/>

 NotEqualDestination - locates message destination session according to the
specified automatic routing strategy and returns true when the located destination
session is not equal to the one specified in action

<NotEqualDestination Strategy="OrderFlowStrategy100" Value="Client"/>

 MatchDestination - locates message destination session according to the specified
automatic routing strategy and returns true when the located destination session is
matched to the specified pattern

<MatchDestination Strategy="OrderFlowStrategy100" Value="FIXSession.*"/>

 NotMatchDestination - locates message destination session according to the
specified automatic routing strategy and returns true when the located destination
session is not matched to the specified pattern

<NotMatchDestination Strategy="OrderFlowStrategy100" Value="FIXSession.*"/>

FIXEdge Business Rules Guide

It is recommended to use EqualField (NotEqualField) rather than MatchField
(NotMatchField), when applicable. Although MatchField is more flexible, it may decrease the
performance.
Condition section is not required.

Action section

Action denotes the instructions that must be performed when a Rule is being applied to a
message. Action is always a required section of any Rule. It must contain at least one
instruction. Action section may contain the following instruction types:

 Send – sends a message to a specified destination:

<Send><FixSession SenderCompID="Sender" TargetCompID="Target"/></Send>

 SetField – assigns the given value to a specified field:

<SetField Field="50" Value="Ordinary Sender SubID"/>

 CopyField – copies the value from SourceField to TargetField:

<CopyField SourceField="55" TargetField="58" IsRequiredField="Y"/>

 MoveField –moves the value from SourceField to TargetField:

<MoveField SourceField="50" TargetField="53"/>

 FormatSymbol - splits or assembles the value of Symbol tag

<FromatSymbol ActionType="Assemble" TrgSeparator="." />

 RemoveField – removes a specified field from message:

<RemoveField Field="50" />

 Script – executes instructions from Javascript or XSLT file with given parameters:

FIXEdge Business Rules Guide

<Script Language="XSLT" Field="213" LengthField="212" FileName="file.xsl"><Param
Name="Acct">JBDFLYX</Param></Script>

 Convert – converts a message to a specified FIX protocol dialect:

<Convert TargetProtocol="FIX.4.3" SourceProtocol=""/>

 Transform – makes a new message of a specified message type based on a source
message:

<Transform TargetMsgType="9"/>

 HandlerAction – handles a message by the defined handler:

<HandlerAction Name="MsgProcessor" />

 CreateReject – creates a corresponding reject message for the routed message:

<CreateReject RejectType="session"/>

 ModifyField – applies a specified plug-in method to the routed message:

<ModifyField Field="11" Rule="Brass.ClOrdId.Converter.Brass2Source()" />

 FormatSymbol – modifies the value of Symbol and SymbolSfx tags. The action is able
to merge Symbol and SymbolSfx tags into the value of Symbol tag or split the value of
Symbol tag into Symbol and SymbolSfx tags:

<FormatSymbol ActionType="Assemble" TrgSeparator="_" />

 SaveToHistory – stores data from the handled message to history storage:

FIXEdge Business Rules Guide

<SaveToHistory Name="Orders"/>

 ClearHistory – starts history storage clearing, obsolete records are erased:

< ClearHistory Name="Orders"/>

 CreateReject – creates a corresponding reject message for the handled message:

<CreateReject RejectType="session"/>

 ProcessNetStatusRequest – creates a corresponding NetStatusRespone FIX
message for the handled NetStatusRequest message:

<ProcessNetStatusRequest/>

 CreateNotification – creates a notification Email FIX message with specified
parameters:

<CreateNotification Category="N" Reason="Test Reason"/>

 SystemCommand – executes system command or script:

<SystemCommand Command="runSystemCommand.bat"/>

 ConvertToBusinessReject – converts SessionLevelReject FIX message into the
corresponding BusinessReject FIX message:

<ConvertToBusinessReject/>

 StrategySend – applies a specified automatic routing strategy to the handled
message, locates a destination session and sends the message to the required
session:

FIXEdge Business Rules Guide

<StrategySend Name="OrderFlowStrategy100"/>

Source identification

Identifier represents the name of a source in a routing rule specified for some FIX session. If
the source identifier is already registered in server configuration and related sessions are
established, FIXEdge will define the way of message routing between FIX sessions and TA
clients. The source identifier will be unbound as FIX session name if explicit unlink is
executed (using XML command for example).
The routing table determines the path for incoming FIX message to be routed:

Source (source name) Condition Action (destination name)
Source name - [Session Name] or
[ClientID]
Destination name - [ClientID] or [Session
Name]

35 ::= AE
571 ::= IST-\\d+

Send to [ClientID]

here source name and destination name define the direction of message routing.

According to this routing table the rule will look in the following way:

<Rule>

<Source Name = ―SourceName‖/>
<Condition>

<MatchField Field="35" Value=".*"/>
<MatchField Field="571" Value="IST-\\d+"/>

</Condition>
<Action>

<Send Name = ―ClientID‖/>
</Action>

</Rule>

The routing table applies this rule to all incoming messages from session with
―SessionName‖ identified with ―SourceName‖ and send them to source of TA client
―ClientID‖.

Source identifier has the following restrictions:

 The name of source identifier must be unique for each FIX session;

 The source identifier of TA client must be represented as Client ID;

 It must contain characters with codes from ASCII [30] to ASCII [128];

 It must begin with a letter, digit or underlining symbol ‗_‘ ;
Whitespace characters in the beginning or in the end of name will be ignored by rule parsing.

FIXEdge Business Rules Guide

FIXEdge events

Session events

FIXEdge router provides the user with a possibility to establish a set of Business Rules that
handles FIXEdge events:

 New session was created.

 Session was destroyed.

 Unable to route message to a specified target.

 Session level reject was received in response to the sent application message.

 Routing rule failed during execution.

 Source section may have <FixSession SenderCompID="" TargetCompID=""/> element
to identify a session that launches an event.

 Source section may have <Client Name=""/> element to identify a client that launches
an event.

 Source section of any event may have <Source Name=""/> attribute of source
identifier that launches an event (see Source identification for details).

Create session event

FIXEdge launches a create session event in case a new session is created. The XML
element CreateSessionEvent rule consists of the following sections:

 Source

 Condition

 CreateSessionAction
Source section of CreateSessionEvent is the same as Source of the Rule XML element.
Source is a required section.
Condition section of CreateSessionEvent is the same as Condition of the Rule XML element.
Condition is not a required section.
CreateSessionAction section denotes the actions that must be applied to message.
CreateSessionAction is a required section and it must contain at least one instruction.
CreateSessionAction section may contain the following instructions:

 Script – applies JavaScript condition to message:

<Script Language="JavaScript" FileName ="testScript.js"/>

 AcceptSession – accepts session creation. CreateSessionAction section may contain
this action only once:

<AcceptSession />

 RejectSession – declines session creation. CreateSessionAction section may contain

FIXEdge Business Rules Guide

this action only once:

<RejectSession />

Destroy session event

FIXEdge launches a destroy session event in case the session is closed. The XML element
DestroySessionEvent rule consists of the following sections:

 Source

 Condition

 DestroySessionAction
Source section of DestroySessionEvent is the same as Source of the Rule XML element.
Source is a required section.
Condition section of DestroySessionEvent is the same as Condition of the Rule XML
element. Condition is not a required section.
DestroySessionAction section denotes the actions that must be applied to a message.
DestroySessionAction is a required section and it must contain at least one instruction.
DestroySessionAction section may contain the following instructions:

 Script – applies JavaScript condition to message:

<Script Language="JavaScript" FileName ="testScript.js"/>

Unable to route message event

FIXEdge launches an unable to route message event in case message routing failed and
FIXEdge is unable to route message to a specified target session or client. The XML element
OnUndeliveredMessageEvent rule consists of the sections:

 Source

 Condition

 Action
Source section of OnUndeliveredMessageEvent is the same as Source of the Rule XML
element. Source is a required section.
Condition section of OnUndeliveredMessageEvent is the same as Condition of the Rule XML
element. Condition is not a required section.
Action section of OnUndeliveredMessageEvent is the same as Action of the Rule XML
element. Action is a required section.

Session level reject is received in response to the sent application message
FIXEdge launches a session level reject event in case SessionLevelReject FIX message is
received. The XML element OnSessionLevelRejectEvent rule consists of the following
sections:

FIXEdge Business Rules Guide

 Source

 Condition

 Action
Source section of OnSessionLevelRejectEvent is the same as Source of the Rule XML
element. Source is a required section.
Condition section of OnSessionLevelRejectEvent is the same as Condition of the Rule XML
element. Condition is not a required section.
Action section of OnSessionLevelRejectEvent is the same as Action of the Rule XML
element. Action is a required section.

Routing rule failed during execution
FIXEdge launches a routing rule failed event in case of BL Rule failure during message
handling, when FIXEdge is unable to route message according to BL Rule. The XML element
OnRuleFailEvent rule consists of the following sections:

 Source

 Condition

 Action
Source section of OnRuleFailEvent is the same as Source of the Rule XML element. Source
is a required section.
Condition section of OnRuleFailEvent is the same as Condition of the Rule XML element.
Condition is not a required section.
Action section of OnRuleFailEvent is the same as Action of the Rule XML element. Action is
a required section.

FIXEdge Business Rules Guide

Plug-ins
FIXEdge offers a flexible solution for modification of FIX message partial fields - Plugins.
Plugins provide an open interface and can be written in any programming language that
allows creating modules in Microsoft Windows DLL format. The custom Plugins mechanism
can be used in case Business Layer‘s built-in mechanisms and engines cannot perform a
specified task. For example when conversion data must be stored from call to call or when its
data must be persistent.

Plugins section may contain one or more Plugin definitions. Each Plugin definition contains a
set of plugin parameters. Plugin element has a required ‗Plugin Path‘ attribute that contains
both path and name of plugin DLL. Plugin parameters are defined in Param element with a
required ‗Param Name‘ attribute.
ModifyField action refers to the defined plugin and executes plugin method for the routed
message.

FIXEdge Business Rules Guide

Handlers
FIXEdge offers a flexible solution for FIX message processing - Handlers. Handlers provide
an open interface and can be written in any programming language that allows creating
modules in Microsoft Windows DLL format. The custom Handlers mechanism can be used in
case Business Layer‘s built-in mechanisms and engines cannot perform a specified task. For
example when data must be stored from message to message or when data must be
persistent. FIXEdge loads Handlers only once: when it parses the XML file.

DllHandlers section may contain one or more Handler definitions. Each Handler definition
has the following attributes:

 Handler Name – unique handler name that will be used in HandlerAction. The attribute
is required.

 Description – handler description. The attribute is required.

 DllName – contains the path and file name of the Handler‘s DLL. The attribute is
required.

 VerifyHandlersVersion – specifies whether FIXEdge must verify the version of Handler
interface when loading this handler. It prevents the ―dll hell‖ problem. The attribute is
required.

HandlerAction action refers to the defined Handler and initiates message handling by a
specified Handler.

FIXEdge Business Rules Guide

Histories
FIXEdge offers a flexible solution for storing information that goes through the Business
Layer of FIXEdge – Histories. Business Layer supports the following types of Histories:

 ODBCHistory – allows storing information in the database

 FileHistory - allows storing information in the persistent file-based storage

 MemoryHistory - allows storing information in the transient memory-based storage
Histories can be used in routing rules only when they are defined in the BL rules XML file.
Each history supports the following attributes:

 Name – name of history, used to refer to history from XML actions or JavaScript
functions. The attribute is required.

 StorageType – type of history, the valid values are: ―ODBC‖, ―File‖, ―Memory‖. The
attribute is required.

 ClearTime –defines when every-day clear procedure is started. The format is
HH:MM:SS. Clear procedure erases obsolete records.

 Additional attributes depend on the history type.

The Business Layer of FIXEdge can be extended with the set of actions to work with defined
Histories from XML rules and JavaScript. The following XML actions must be defined:

 SaveToHistory – saves the data retrieved from FIX message to history.

 ClearHistory – erases obsolete records from history.
Following JavaScript functions defined:

 saveToHistory – saves data to history

 getFromHistory – locates a record in history by key and retrieves the value of record
field

 getRecordFromHistory – locates a record in history by key and returns it

ODBC History

ODBCHistory supports the following additional attributes:

 TableName –name of table in database. History will be reflected in this table. The
attribute is required

 ColumnSize –default size of history string fields.

 ConnectionString –ODBC connection string. The attribute is required
ODBCHistory supports the following types of fields:

 Int

 Float

 Date

 DateTime

 String – default field type

Example of ODBCHistory definition:

//Defines history ―SampleODBCHistory‖ that reflects on the Orders table in database SampleBase.
// Following FIX message tags mapped into the Orders table fields:

FIXEdge Business Rules Guide

// ClOrdID(11) -> ClOrdID, type – string
// SenderCompId(49) -> SenderCompId, type – string[512]
// TargetCompId(56) -> TargetCompId, type – string
// SettlDate(64) -> SettlDate, type – date
// History maps the record‘s ExpireDateTime attribute to the database field TransactTime
<History Name="SampleODBCHistory"
 StorageType="ODBC"
 TableName="SampleBase.dbo.Orders"

 ClearTime="22:00:00"
 ColumnSize="256"
 ConnectionString="DSN=SampleBase;UID=test;PWD=test123;">
 <KeyField ColumnName="ClOrdID">11<KeyField>
 <Field ColumnName="SenderCompID" ColumnSize="512">49</Field>
 <Field ColumnName="TargetCompID">56</Field>
 <Field ColumnName="SettlDate" DataType="Date" ColumnSize="10">64</Field> <Field
ColumnName="TransactTime">ExpireDateTime</Field>
</History>

File History

FileHistory supports the following additional attributes:

 WorkingDirectory – path to stored history files. The attribute is required.

 StorageFileName – name of history storage file. The attribute is required.

Example of FileHistory definition:

//Defines history ―SampleFileHistory‖, history saves data to the file .\logs\SmplFileHistory
// The ClOrdID(11), SenderCompId(49) and TargetCompId(56) FIX tags used as a record composite key
<History Name="SampleFileHistory"
 WorkingDirectory=".\logs"
 StorageType="File"

 StorageFileName="SmplFileHistory"
 ClearTime="22:00:00">

 <KeyFields>11, 49, 56<KeyFields>
 <Fields> 99,18,63,64,528,529,100</Fields>
 <Field>ExpireDateTime</Field>
</History>

Memory History

MemoryHistory does not require additional attributes.

Example of MemoryHistory definition:

//Defines history ―SampleMemHistory‖
// The ClOrdID(11), SenderCompId(49) and TargetCompId(56) FIX tags used as a record composite key
<History Name="SampleMemHistory"
 StorageType="Memory"

FIXEdge Business Rules Guide

 ClearTime="22:00:00">
 <KeyFields>11, 49, 56<KeyFields>
 <Fields> 99,18,63,64,528,529,100</Fields>
 <Field>ExpireDateTime</Field>
</History>

Examples

1. Messages from all FIX sessions are sent to one client with ‗MQClient‘ ID. Messages from
the session with ‗MQClient‘ ID are sent to FIX session according to SenderCompID and
TargetCompID set in message.

<?xml version="1.0" encoding="UTF-8"?>
<FIXEdge>
 <BusinessLayer>
 <Rule Description="Routing rule for the incoming messages">
 <Source>
 <FixSession SenderCompID=".*" TargetCompID=".*"/>
 </Source>
 <Action>
 <Send>
 <Client Name="MQClient"/>
 </Send>
 </Action>
 </Rule>
 <Rule Description=‖Routing rule for the outgoing messages‖>
 <Source>
 <Client Name="MQClient"/>
 </Source>
 <Action>
 <Send>
 <FixSession />
 </Send>
 </Action>
 </Rule>
 </BusinessLayer>
</FIXEdge>

2. Messages are routed to different sessions depending on ExDestination. If
ExDestination=‖ISE‖ messages are sent to the client with ―ISE‖ ID. If ExDestination=‖AMEX‖
messages are sent to the client with ―AMEX‖ ID, otherwise messages are sent to the client
with ―Unknown‖ ID. All messages from all clients are sent back to the FIX session.

<?xml version="1.0" encoding="UTF-8"?>
<FIXEdge>
 <BusinessLayer>
 <Rule Description="Routing rule for the AMEX messages">
 <Source>

FIXEdge Business Rules Guide

 <FixSession SenderCompID="Foo" TargetCompID="Bar"/>
 </Source>
 <Condition>
 <MatchField Field="100" Value="AMEX"/>
 </Condition>
 <Action>
 <Send>
 <Client Name="AMEX"/>
 </Send>
 </Action>
 </Rule>
 <Rule Description="Routing rule for the ISE messages">
 <Source>
 <FixSession SenderCompID="Foo" TargetCompID="Bar"/>
 </Source>
 <Condition>
 <MatchField Field="100" Value="ISE"/>
 </Condition>
 <Action>
 <Send>
 <Client Name="ISE"/>
 </Send>
 </Action>
 </Rule>
 <Rule Description="Routing rule for other messages">
 <Source>
 <FixSession SenderCompID="Foo" TargetCompID="Bar"/>
 </Source>
 <Condition>
 <NotMatchField Field="100" Value="AMEX|ISE"/>
 </Condition>
 <Action>
 <Send>
 <Client Name="Unknown"/>
 </Send>
 </Action>
 </Rule>
 <Rule Description=‖Routing rule for the outgoing messages‖>
 <Source>
 <Client Name=".*"/>
 </Source>
 <Action>
 <Send>
 <FixSession SenderCompID="Foo" TargetCompID="Bar"/>
 </Send>
 </Action>
 </Rule>
 </BusinessLayer>
</FIXEdge>

3. There are no restrictions for the number of Action elements (acts) of different types. In this
case they are executed in the order of appearance.

FIXEdge Business Rules Guide

<Rule>
 <Source>
 <Client Name="TestClient"/>
 </Source>
 <Condition>
 <MatchField Field="35" Value="C"/>
 </Condition>
 <Action>
 <SetField Field="57" Value="TargetSubID"/>
 <Send>
 <FixSession SenderCompID="TestSender" TargetCompID="TestTarget"/>
 </Send>
 <SetField Field="57" Value="AdminTargetSubID"/>
 <Send>
 <FixSession SenderCompID="TestSender" TargetCompID="AdminTestTarget"/>
 </Send>
 </Action>
</Rule>

This will result in the scenario below:

 1. Message is duplicated: SrcMsg → DupMsg
 2. For DupMsg: Field 57 is set to "TargetSubID"
 3. DupMsg is sent to the defined FIX Session ID
 4. Message is duplicated: DupMsg → DupDupMsg
 5. For DupDupMsg: Field 57 is set to "AdminTargetSubID"
 6. DupDupMsg is sent to the defined FIX Session ID

Note: The message will be duplicated according to the number of Send actions in the rule.
4. Reject creation of the session with ―Test‖ client name

<CreateSessionEvent>
 <Source>
 <Client Name="Test"/>
 </Source>
 <CreateSessionAction>
 <RejectSession />
 </CreateSessionAction>
</ CreateSessionEvent>

5. Handle Unable to route message event – route all non-routed messages to the client with
―Recycle‖ ID.

< OnUndeliveredMessageEvent >
 <Source>

FIXEdge Business Rules Guide

 <Client Name=".*"/>
 </Source>
 < Action >
 <Send>
 <Client Name=" Recycle "/>
 </Send>
 </ Action >
</ OnUndeliveredMessageEvent >

6. Define plugin and use it to modify the value of tag 11

 <Plugins>
 <Plugin Path=".\FIXServer\bin\PluginConverter.dll">
 <Param Name="MinBranchCode">AAAA</Param>
 <Param Name="MaxBranchCode">ZZZZ</Param>
 <Param Name="WorkingDirectory">.\FIXServer\bin\plugin\</Param>
 <Param Name="StorageName">PluginConverter</Param>
 </Plugin>
 </Plugins>
 <Rule Description="Routing rule for the incoming messages">
 <Source>
 <FixSession SenderCompID="Client" TargetCompID="FixEdge"/>
 </Source>
 <Action>
 <ModifyField Field="11" Rule=" PluginConverter.Source2Plugin()" />
 <Send>
 <FixSession SenderCompID="FixEdge" TargetCompID="Client2"/>
 </Send>
 </Action>
 </Rule>

7. Define handler and use it to process messages from FIX session

 <DllHandlers>
 <Handler Name="TestHandler"
 Description="Test Handler description"
 DllName="./TestHandler.dll"
 VerifyHandlersVersion="true" />
 </DllHandlers>
 <Rule Description="Routing rule for the incoming messages">
 <Source>
 <FixSession SenderCompID="Client" TargetCompID="FixEdge"/>
 </Source>
 <Action>
 < HandlerAction Name="TestHandler" />
 <Send>
 <FixSession SenderCompID="FixEdge" TargetCompID="Client2"/>
 </Send>
 </Action>
 </Rule>

FIXEdge Business Rules Guide

Scripts

FIXEdge offers a flexible solution for routing and transferring of FIX messages that go
through the Business Layer of FIXEdge and data manipulations. In addition to XML Rules,
there are two ways to enhance the flexibility of message transferring and data manipulation.
Those ways are scripting with Javascript and XSLT. The proper usage of this feature
requires scripts written in one of the scripting languages and assigned to the Script
instruction of Action section in a Business Rule.
The scripting subsystem gives the user the following advantages:

 • Saves the time spent on business logic implementation
 • Flexibility and simplicity of modification
 • Does not cause significant losses in performance

You can find more information about Javascript and XSTL scripting can in

FixEdge_BR_Scripting_UserGuide.html.

Business Rule scripting with Javascript

It is enough to mention that the script is a ―Javascript‖ in the Script tag, in order to run the
script and perform the proper transformations.

FIXEdge Javascript act provides the user with all the standard Javascript features and
functionality. In addition to this, it enables the user to use functions that provide access to FIX
message inside data, allows manipulations with fields and groups as well as whole FIX
messages.
Predefined FIX date formats:

 HHMMSSUtc for the UTC "HH:MM:SS" date format

 HHMMSSsssUtc for the UTC "HH:MM:SS.sss" date format

 YYYYMM for the "YYYYMM" date format

 YYYYMMDD for the"YYYYMMDD" date format

 YYYYMMWW for the"YYYYMMWW" date format, where WW - number of week
"w1"..."w4"

 DATETIMEUtc for the UTC "YYYYMMDD-HH:MM:SS" date format

 DATETIMEsssUtc for the UTC "YYYYMMDD-HH:MM:SS.sss" date format

 YYYYMMDDLmd for the local market "YYYYMMDD" date format

A trivial example of a complete JS script for a Business Rule is given below:

//take the value the 11th tag from the fix message and get the last 4
//characters from it
//assign the new value for the tag 11 with format BBBBSSSSCCYYMMDD
//where
//BBBB - any 4 characters
//SSSS - last 4 characters from the old value of field 11
//Ð¡Ð¡ - century

FIXEdge Business Rules Guide

//YY- year
//MM - month
//DD - day
field_11 = getStringField(11);
if(field_11.length() < 4)
 return;
last4 = field_11.slice(field_11.length() - 4);
currDate = getCurrentDateStr(YYYYMMDDUtc);
century = currDate.slice(1, 3);
century++;
result = "bbbb" + last4 + century + currDate.substr(3);
setStringField(11, result);

Error handling during script execution

In case of syntax error in script its execution will be terminated and failed. There is no way to
handle syntax errors in script during script execution. The user is able to stop script execution
using throw statement, the result in this case will be the same. The user must be able to
verify and handle logical errors using verification functions (like isNaN, isMessageValid(), etc)
in condition statements.

Business Rule scripting with XSLT

When a more complicated operation than a standard Business Rule can offer is required for
field transformation, the XSLT script action can be used. The user should specify a certain
FIX Field [and Field Length] in the Script instruction. The rules processor will extract the field
value, apply the specified transformation and assign the obtained result to the field.

XSLT Script instruction in the Action section of a Business Rule:

<Script Language="XSLT" Field="213" LengthField="212" FileName="script1.xslt" >
 <Param Name="AcctParam">'JBDFLLC'</Param>
</Script>

This instruction causes the rule processor to get the value of FIX field 213, loads XSLT script
from script1.xslt file, applies the transformation to the value passing AcctParam parameter
there and assigns the resulting value to field 213.

LengthField attribute is optional. If it is specified the rule processor sets the length to the
result. This attribute must be specified if the field has FIX type Raw Data.

The specification for XSLT can be found at W3C . Apache Xalan is used as internal XSLT
processor.

Example:

Messages from all FIX sessions are sent to one client with ‗MQClient‘ ID. Messages from the
session with ‗MQClient‘ ID are sent to FIX session according to SenderCompID and

http://www.w3.org/TR/xslt
http://xml.apache.org/xalan-j/

FIXEdge Business Rules Guide

TargetCompID set in message.

<?xml version="1.0" encoding="UTF-8"?>
<FixEdge>
 <BusinessLayer>
 <Rule Description="Routing rule for the incoming messages">
 <Source>
 <FixSession SenderCompID=".*" TargetCompID=".*"/>
 </Source>
 <Action>
 <Send>
 <Client Name="MQClient"/>
 </Send>
 </Action>
 </Rule>
 <Rule Description=‖Routing rule for the outgoing messages‖>
 <Source>
 <Client Name="MQClient"/>
 </Source>
 <Action>
 <Send>
 <FixSession />
 </Send>
 </Action>
 </Rule>
 </BusinessLayer>
</FixEdge>

FIXEdge Business Rules Guide

Default routing strategies

There are two forms of default routing:

< DeliverToStrategy> element specifies the routing destination that has been specified
beforehand inside the source FIX message.
The following properties of the element are required:
Property Name – contains the name of element to identify in factory rules.
Property TargetField – contains a tag number with routing destination. Actually, there may
be tag 128 <DeliverToCompID>.
SourceField – contains a tag number with FIX message source and provides the possible
back way relation. The property is not required.

<DeliverToStrategy Name=‖DeliverToStrategy115128‖ SourceField=‖115‖ TargetField=‖128‖/>

Note: Business Layer takes the value from tag 49 <Sender> in case SourceField tag is not
found in FIX message or is not specified in a rule. The direction of message routing is
defined by session name that is a pair of Source|Target (or Sender|Target when
SourceField is not found). The session with a specified pair of Source|Target should be
registered in FIXEdge, otherwise a message will be rejected.

<OrderFlowStrategy> element defines the orders flow to destination that can be found in the
history of orders.
The following properties of element are required:
Property Name – contains the name of element to identify in factory rules.
Property History – contains the name of History element, where the order flow strategy will
refer to specify the routing destination.
Property DestinationField – contains a tag number with destination. For example, tag 100
<ExDestination>.

<OrderFlowStrategy Name=‖OrderFlowStrategy100‖ History=‖Orders‖ DestinationField=‖100‖ />

Note: OrderFlow strategy defines the destination of FIX message routing by source identifier
only. Session with source identifier that in the destination field should be registered in
FIXEdge, otherwise an order will be rejected.

History used in the OrderFlow strategy must contain the following required fields:
key fields: ClOrdID(11), CrossID(548), ListID(66)
common fields: SenderCompID(49), TargetCompID (56), OrdStatus (39), ‗DestinationField‘
number in strategy description (default 100)

Factory_OrderHistory.xml

FIXEdge Business Rules Guide

<History Name="Orders"
 StorageType="File"
 CacheRecords="5"
 ClearTime="23:50:00"
 WorkingDirectory="L:/Program Files/B2Bits/FIXEdge/FixEdge1/log/"
 StorageFileName="BLHistory_Orders.log">
 <KeyFields>11,548,66</KeyFields>
 <Fields>49,56,100,1,39,439,440,167</Fields>
</History>

Examples

Factory_Strategy.xml

 <OrderFlowStrategy Name=‖OrderFlowStrategy100‖ History=‖Orders‖ DestinationField=‖100‖ />

 <DeliverToStrategy Name=‖DeliverToStrategy115128‖ SourceField=‖115‖ TargetField=‖128‖/>

Factory_OrderFlowRule.xml

<Rule Enabled=‖true‖ Description=‖Factory rule for new order‖>
 <Source>
 <Session Name=‖.*‖ />
 </Source>
 <Condition>
 <MatchField Tag=‖35‖ Value=‖D|AB|G|AC|8|9‖ />
 </Condition>
 <Action>
 <StrategySend Name=‖OrderFlowStrategy100‖ />
 </Action>
</Rule>

CME_OrderRue.xml

<Rule Enabled=‖false‖ Description=‖Override for new order factory rule, when send to CME‖>
 <Source>
 <Session Name=‖.*‖ />
 </Source>
 <Condition>
 <MatchField Tag=‖35‖ Value=‖D|AB‖ />
 <EqualField Tag=‖100‖ Value=‖CME‖ />

FIXEdge Business Rules Guide

 </Condition>
 <Action>
 <Convert TargetProtocol=‖CME_FIX42‖ />
 <SaveToHistory Name=‖Orders‖>

 <Send>
 <Session Name=‖CME‖>
 </Send>

 </Action>
</Rule>

CME_ReplaceRule.xml

<Rule Enabled=‖false‖ Description=‖Override for replace factory rule, when send to CME‖>
 <Source>
 <Session Name=‖.*‖ />
 </Source>
 <Condition>
 <MatchField Tag=‖35‖ Value=‖G|AC‖ />

 <MatchDestination Strategy=‖OrderFlowStrategy100‖
Value=‖CME‖ />

 </Condition>
 <Action>
 <Convert TargetProtocol=‖CME_FIX42‖ />
 <StrategySend Name=‖OrderFlowStrategy100‖ />
 </Action>
</Rule>

Factory_DeliverToMessageRule.xml

<Rule Enabled=‖true‖ Description=‖Factory rule for strategy based on DeliverTo‖>
 <Source>
 <Session Name=‖.*‖ />
 </Source>
 <Condition>
 <MatchField Tag=‖35‖ Value=‖c|d‖ />
 </Condition>
 <Action>
 <StrategySend Name=‖DeliverToStrategy115128‖ />
 </Action>
</Rule>

FIXEdge Business Rules Guide

Contact us
sales@btobits.com
Phone: +1-888-378-0666

Global Headquarters
US Client Support and Delivery Center
EPAM Systems, Inc
41 University Drive
Suite 202
Newtown, PA 18940
Phone: +1-267-759-9000
Fax: +1-267-759-8989

mailto:sales@btobits.com

